Posts about open-science

2018-06-13 generating an unique seed for a given filename

When creating large simulations, you may sometimes create unique identifiers for each of it. This is useful to cache intermediate results for instance. This is the main function of hashes. We will here create a simple one-liner function to generate one.

Read more…

Comments

2017-12-21 predictive-coding of variable motion

In some recent modeling work:

Laurent Perrinet, Guillaume S. Masson. Motion-based prediction is sufficient to solve the aperture problem. Neural Computation, 24(10):2726--50, 2012 http://invibe.net/LaurentPerrinet/Publications/Perrinet12pred

we study the role of transport in modifying our perception of motion. Here, we test what happens when we change the amount of noise in the stimulus.

In this script the predictive coding is done using the MotionParticles package and for a http://motionclouds.invibe.net/ within a disk aperture.

Read more…

Comments

2017-12-13 accessing the data from a pupil recording

I am experimenting with the pupil eyetracker and could set it up (almost) smoothly on a macOS. There is an excellent documentation, and my first goal was to just record raw data and extract eye position.

In [1]:
from IPython.display import HTML
HTML('<center><video controls autoplay loop src="http://blog.invibe.net/files/2017-12-13_pupil%20test_480.mp4" width=61.8%/></center>')
Out[1]:

This video shows the world view (cranio-centric, from a head-mounted camera fixed on the frame) with overlaid the position of the (right) eye while I am configuring a text box. You see the eye fixating on the screen then jumping somewhere else on the screen (saccades) or on the keyboard / hands. Note that the screen itself shows the world view, such that this generates an self-reccurrent pattern.

For this, I could use the capture script and I will demonstrate here how to extract the raw data in a few lines of python code.

Read more…

Comments

2017-11-07 MEUL with a non-parametric homeostasis

In this notebook, we will study how homeostasis (cooperation) may be an essential ingredient to this algorithm working on a winner-take-all basis (competition). This extension has been published as Perrinet, Neural Computation (2010) (see http://invibe.net/LaurentPerrinet/Publications/Perrinet10shl ). Compared to other posts, such as this previous post, we improve the code to not depend on any parameter (namely the Cparameter of the rescaling function). For that, we will use a non-parametric approach based on the use of cumulative histograms.

This is joint work with Victor Boutin and Angelo Francisioni. See also the other posts on unsupervised learning.

Read more…

Comments

2017-10-25 Designing a A0 poster using matplotlib

! D O C T Y P E h t m l >

Comments

2017-09-20 The fastest 2D convolution in the world

Convolutions are essential components of any neural networks, image processing, computer vision ... but these are also a bottleneck in terms of computations... I will here benchmark different solutions using numpy, scipy or tensorflow. This is work-in-progress, so that any suggestion is welcome (for instance on StackExchange!

Read more…

Comments

2017-06-15 Le jeu de l'urne

! D O C T Y P E h t m l >

Comments

2017-03-29 testing COMPs-fastPcum_scripted

In this notebook, we will study how homeostasis (cooperation) may be an essential ingredient to this algorithm working on a winner-take-all basis (competition). This extension has been published as Perrinet, Neural Computation (2010) (see http://invibe.net/LaurentPerrinet/Publications/Perrinet10shl ). Compared to the previous post, we integrated the faster code to https://github.com/bicv/SHL_scripts.

See also the other posts on unsupervised learning,

This is joint work with Victor Boutin.

Read more…

Comments

2017-03-29 testing COMPs-fastPcum

In this notebook, we will study how homeostasis (cooperation) may be an essential ingredient to this algorithm working on a winner-take-all basis (competition). This extension has been published as Perrinet, Neural Computation (2010) (see http://invibe.net/LaurentPerrinet/Publications/Perrinet10shl ). Compared to the previous post, we optimize the code to be faster.

See also the other posts on unsupervised learning,

This is joint work with Victor Boutin.

Read more…

Comments

2017-03-29 testing COMPs-Pcum

In this notebook, we will study how homeostasis (cooperation) may be an essential ingredient to this algorithm working on a winner-take-all basis (competition). This extension has been published as Perrinet, Neural Computation (2010) (see http://invibe.net/LaurentPerrinet/Publications/Perrinet10shl ). In particular, we will show how one can build the non-linear functions based on the activity of each filter and which implement homeostasis.

See also the other posts on unsupervised learning,

This is joint work with Victor Boutin.

Read more…

Comments