## 2017-12-21 predictive-coding of variable motion

In some recent modeling work:

Laurent Perrinet, Guillaume S. Masson. Motion-based prediction is sufficient to solve the aperture problem. Neural Computation, 24(10):2726--50, 2012 http://invibe.net/LaurentPerrinet/Publications/Perrinet12pred

we study the role of transport in modifying our perception of motion. Here, we test what happens when we change the amount of noise in the stimulus.

In this script the predictive coding is done using the MotionParticles package and for a http://motionclouds.invibe.net/ within a disk aperture.

## 2017-12-13 accessing the data from a pupil recording

I am experimenting with the pupil eyetracker and could set it up (almost) smoothly on a macOS. There is an excellent documentation, and my first goal was to just record raw data and extract eye position.

In [1]:
from IPython.display import HTML
HTML('<center><video controls autoplay loop src="http://blog.invibe.net/files/2017-12-13_pupil%20test_480.mp4" width=61.8%/></center>')

Out[1]:

This video shows the world view (cranio-centric, from a head-mounted camera fixed on the frame) with overlaid the position of the (right) eye while I am configuring a text box. You see the eye fixating on the screen then jumping somewhere else on the screen (saccades) or on the keyboard / hands. Note that the screen itself shows the world view, such that this generates an self-reccurrent pattern.

For this, I could use the capture script and I will demonstrate here how to extract the raw data in a few lines of python code.

## 2016-07-16 Predictive coding of motion in an aperture

After reading the paper http://www.jneurosci.org/content/34/37/12601.full by Helena X. Wang, Elisha P. Merriam, Jeremy Freeman, and David J. Heeger (The Journal of Neuroscience, 10 September 2014, 34(37): 12601-12615; doi: 10.1523/JNEUROSCI.1034-14.2014), I was interested to test the hypothesis they raise in the discussion section :

The aperture-inward bias in V1–V3 may reflect spatial interactions between visual motion signals along the path of motion (Raemaekers et al., 2009; Schellekens et al., 2013). Neural responses might have been suppressed when the stimulus could be predicted from the responses of neighboring neurons nearer the location of motion origin, a form of predictive coding (Rao and Ballard, 1999; Lee and Mumford, 2003). Under this hypothesis, spatial interactions between neurons depend on both stimulus motion direction and the neuron's relative RF locations, but the neurons themselves need not be direction selective. Perhaps consistent with this hypothesis, psychophysical sensitivity is enhanced at locations further along the path of motion than at motion origin (van Doorn and Koenderink, 1984; Verghese et al., 1999).

Concerning the origins of aperture-inward bias, I want to test an alternative possibility. In some recent modeling work:

Laurent Perrinet, Guillaume S. Masson. Motion-based prediction is sufficient to solve the aperture problem. Neural Computation, 24(10):2726--50, 2012 http://invibe.net/LaurentPerrinet/Publications/Perrinet12pred

I was surprised to observe a similar behavior: the trailing edge was exhibiting a stronger activation (i. e. higher precision revealed by a lower variance in this probabilistic model) while I would have thought intuitively the leading edge would be more informative. In retrospect, it made sense in a motion-based prediction algorithm as information from the leading edge may propagate in more directions (135° for a 45° bar) than in the trailing edge (45°, that is a factor of 3 here). While we made this prediction we did not have any evidence for it.

In this script the predictive coding is done using the MotionParticles package and for a http://motionclouds.invibe.net/ within a disk aperture.